
CyHELICS
Senior Design Team 28

Design Document

Dr. Gelli Ravikumar

Justin Templeton

Tyler Atkison

Kaya Zdan

Zach Hirst

Thomas Keeshan

Matthew Nevin

sdmay24-28@iastate.edu

sdmay24-28.sd.ece.iastate.edu

April 27th, 2024 | Revision 2.0

mailto:sdmay24-28@iastate.edu


Executive Summary

Development Standards & Practices Used

● HELICS and PandaPower use an open source BSD-3 clause license.
● OpenDSS and Dss-python are open source and have BSD-3 clause license.
● Python is an industry standard interpreted scripting language.

Summary of Requirements

Functional Requirements:

● Use CyHELICS to combine multiple substream programs and run concurrently
● Include both power grid model analysis tools and cyber security focused programs.
● Create a power grid with several transmission models that connect with several distribution

models and demonstrate proper power flow.
● Power Grid must include multiple load types.
● The power grid interface must be able to simulate different grid set ups.
● The simulation must be tested in a VM environment.
● The simulation must be set up in a dockerized environment.

Nonfunctional Requirements:

● The interface must be easy to use for non technical users (city planners, grid designers).
● The user must be able to select how much of the grid they want to simulate an outage for,

with specialized attacks for each one.
● The simulation must give feedback to the user about the state of the simulation (failed,

complete, in progress etc.).



Applicable Courses from Iowa State University Curriculum

Cyber Security:

CPRE 230

CPRE 231

CPRE 308

CPRE 489

CPRE 539

Electrical Engineering:

EE 303

EE 455

EE 456

EE 457

New Skills/Knowledge acquired that was not taught in courses
● Docker knowledge
● Flask usage
● Connecting multiple programs to accomplish one task (ie HELICS, dss-python,

Pandapower)
● HELICS usage
● DSS-Python distribution grid design and analysis
● PandaPower transmission grid design and analysis
● Use HELICS to model electrical vehicle load profiles



Table of Contents

1 Team and Problem Statement

1.1 Team Members 8

1.2 Required Skill Sets for Your Project 8

1.3 Skill Sets covered by the Team 9

1.4 Project Management Style Adopted by the Team 9

1.5 Project Team Roles 9

2 Requirements and Engineering Standards

2.1 Problem Statement 11

2.2 Requirements & Constraints 11

2.3 Engineering Standards 12

2.4 Intended Users and Uses 12

3 Project Plan

3.1 Task Decomposition 13

3.2 Project Management/Tracking Procedures 13

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 13

3.4 Project Timeline/Schedule 14

3.5 Risks And Risk Management/Mitigation 14

3.6 Other Resource Requirements 15

4 Design

4.1 Design Content 16

4.2 Design Complexity 16

4.3 Modern Engineering Tools 17

4.4 Design Context 18

4.5 Prior Work/Solutions 18

4.6 Design Decisions 19

4.7 Proposed Design 19

4.7.0 Design 0 20

4.7.1 Design 1 21

4.7.2 Design 2 22



4.8 Technology Considerations 23

4.9 Design Analysis 23

5 Testing

5.1 Unit Testing 24

5.2 Interface Testing 24

5.3 Integration Testing 25

5.4 Regression Testing 25

5.5 Acceptance Testing 26

5.6 Results 26

6 Implementation

6.1 Functionality 27

6.2 Notes 27

7 Professionalism

7.1 Areas of Responsibility 28

7.2 Project Specific Professional Responsibility Areas 29

7.3 Most Applicable Professional Responsibility Area 30

8 Closing Material

8.1 General Reflection 31

9 Appendices

9.1 Operation Manual 32

9.2 Learnings 36

9.3 Code 37

9.4 Attack Research and Future Work 38

9.5 Docker Future Work 39

9.6 References 40



List of figures/tables/symbols/definitions

● HELICS: a co-simulation tool that allows multiple simulators to run simultaneously and off
of each others’ results. This tool is necessary because otherwise, the simulators running by
themselves would not accurately portray a whole and singular electric power grid.

● Pandapower: a tool that simulates the power generation and transmission of a power grid.
● DSS-Python: a tool that simulates the power distribution and load characteristics of a

power grid, python wrapper for OpenDSS.
● OpenDSS: an electric power distribution system simulator used to design distribution

systems and simulate their usage.
● Docker: Containerized solution to run programs on many platforms easily. Simple to create,

tear down, and connect environments.
● Virtualization: Running a guest operating system on a host machine, available to Iowa State

Students to safely run their programs.
● Flask: A basic python web application package that can be used with both simple and

complex applications alike. It allows many other packages to be used on the python
platform to run complex methods.

● Ubuntu: the most popular and flushed out linux distribution that is one of the two industry
standards besides for Red Hat linux.

Figure 1: Basic Overview of Project



Figure 2: Our original design



1 Team, Problem Statement, Requirements, and Engineering
Standards

1.1 TEAM MEMBERS

Justin Templeton

Tyler Atkison

Kaya Zdan

Zach Hirst

Thomas Keeshan

Matthew Nevin

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT

Coding proficiency

Power grid analysis and creation

Analysis of cyber attacks

HELICS proficiency

OpenDSS proficiency

Generation of cyber attacks

Web Development (frontend and backend)

Docker

DSS-Python proficiency

PandaPower



1.3 SKILL SETS COVERED BY THE TEAM

Coding proficiency (All)

Power grid analysis and creation (Matthew,
Thomas)

Analysis of cyber attacks (Tyler, Zachary, Justin)

Generation of cyber attacks (Tyler, Zachary, Justin)

Web Development (frontend and backend) (Tyler,
Zachary, Justin)

HELICS proficiency (Kaya, Justin, Matthew)

OpenDSS proficiency (Matthew, Thomas)

DSS-Python proficiency (Matthew, Thomas, Kaya)

Pandapower proficiency (Matthew, Thomas, Kaya)

Communication (All)

Docker (Justin)

1.4 PROJECT MANAGEMENT STYLE ADOPTED BY THE TEAM

AGILE - SCRUM (SPRINT BASED)

1.5 PROJECT TEAM ROLES

Justin - DevOps Manager and Frontend Web Developer

Kaya - HELICS Connection Manager

Zachary - Cyber Attack Simulation Manager

Tyler - Cyber Attack Generation Manager

Matthew - Power Grid Analysis Manager/Electric Vehicle Expert

Thomas - Power Grid Creation Manager



Name Role Contributions

Justin DevOps Manager and Frontend Web
Developer

Created development Docker instances for
all members' virtual machines and set up a
running Docker environment for the
project. Also helped create the frontend
flask app and helped out elsewhere needed.

Kaya HELICS Connection Manager Experimented and researched using
HELICS, Pandapower, and DSS-python, and
set up connecting the three tools. Worked
closely with the electric team to get the
simulation to have proper power flow.

Zachary Cyber Attack Simulation Manager Helped generate the list of preconfigured
attacks against the grid. Developed the
frontend website used to run the simulation,
attacks, and display results. Worked on
designing attacks that fit our model and
exist in the real world. Finally, helped the
Electrical team where needed with coding.

Tyler Cyber Attack Generation Manager Helped create a list of attack vectors and
attacks to be used. Also helped research
attacks and how they could be used in our
environment. Finally, implemented one of
the attacks with different severities.

Matthew Power Grid Analysis
Manager/Electric Vehicle Expert

Researched and ran simulations focusing on
Electric Vehicle load profiles on HELICS..
Modified the given electric vehicle example
to simulate 500 EVs. Added accurate battery
and charger characteristics that apply to real
world applications.. Worked closely with
Thomas and Kaya to help create the grid.

Thomas Power Grid Creation Manager Ran simulations of existing grid examples
for distribution using DSS-Python. Created
transmission model using Pandapower and
analyzed data. Worked closely with Kaya to
get HELICS connected and simulating
properly.



2 Requirements and Engineering Standards

2.1 PROBLEM STATEMENT

Cyber attacks against the power grid are a growing concern and can cause substantial damage to the
power grid. To combat this, we created Cyhelics, a tool to help electric companies and cities to test
the impact of cyber attacks against a simulated power grid.

Our group is creating a virtual distribution & transmission power grid that we can simulate cyber
attacks against to help showcase potential attack and defense scenarios. It ensures that the
companies running their power grid have substantial protection against attacks.

2.2 REQUIREMENTS & CONSTRAINTS

Functional Requirements:

● Use CyHELICS to combine multiple substream programs and run concurrently
● Include power grid model analysis tools
● Create a power grid with a transmission model that connects with the Santa Fe distribution

model and demonstrates proper power flow.
● The grid must be able to handle different load types.
● Use HELICS to simulate a 500 electric vehicle load profile and inject it as a load into the

Santa Fe distribution grid.
● The distribution grid must have at least 50,000 nodes.
● The simulation must be tested in a VM environment.
● The simulation must be set up in a dockerized environment.
● The user must be able to pick an attack to run using the frontend.
● There must be at least 1 attack included.
● The attack must have different severity levels.
● The attack must be focused on emulating the outcome based on real world scenarios.
● The frontend must be able to show the results of the simulation.
● Frontend must have downloadable packages for results.
● Frontend must have an archive mode to quickly look at the effects of cyber attacks.

Nonfunctional Requirements:

● The interface must be easy to use for non technical users (city planners, grid designers).
● The simulation must give feedback to the user about the state of the simulation (failed,

complete, in progress etc.)



2.3 ENGINEERING STANDARDS

● HELICS and PandaPower use an open-source BSD-3 clause license.
● DSS-Python is open source, with no listed license.
● Python is an industry-standard interpreted scripting language.

2.4 INTENDED USERS AND USES

The people who benefit from the results of our project are the power grid companies, the city, and
the general population. Our simulation allows companies to look at the effects of various attacks
and how they will affect their grid, allowing them to see where they need to focus their defense. It
also helps companies see where they need to focus backup systems. Those who directly interact
with the software or its productions are as follows: Power grid companies, local utilities, city
planners, maintenance companies, city politicians, city citizens, and researchers. This output data
can be used to find weaknesses in the input grids and to test future expansions of the grids,
checking for errors along the way.



3 Project Plan

3.1 TASK DECOMPOSITION

Our project had a structured sequence of events. Beginning with the setup of virtual machines
within a dockerized environment. We then established connections between HELICS, Pandapower,
and DSS-Python using the virtual machines we have already created within the Docker
environment. This was followed by creating a transmission model that worked seamlessly with the
SantaFe distribution model, which was then implemented with HELICS using our connections that
we already established. Next, we set up a frontend to be able to run the simulation from and check
the progress from, as well as see the results of the simulation. Finally, we built the attacks into the
frontend so that users can run the attacks from the frontend.

3.2 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team used an Agile Project Management approach. This gave us the flexibility to accommodate
multiple adjustment periods in our project. The adjustment periods ensured a smooth transition for
our team to acclimate to the proposed software. Agile development allowed for small incremental
parts of our project to be developed and tested. As goals and tasks became more advanced, the agile
management structure allowed us to break these tasks down into smaller attainable goals. To
streamline our Agile management style, we used Gitlab for version control and centralized project
management.

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Our team identified milestones that we deem fit for evaluation criteria. First, in the preliminary grid
phase, we simulate pre-existing transmission, distribution, and load models. We used these early
simulations to learn the libraries needed to create the code needed to work with our grid setup.
Moving forward into the grid design phase, we dived into designing a transmission model, ensuring
proper power flow, and conducting analyses encompassing power flow, fault simulations,
harmonics, and unbalanced power flow. We also made sure the SantaFe distribution model
simulates properly with proper power flow. A dynamic load profile is created, emulating real-world
scenarios, including electric vehicle usage and residential neighborhood power consumption, with
fluctuations based on actual data. In the simulation setup phase, each simulation is dockerized
individually. The attack modules phase entailed researching outcomes of past electrical grid cyber
attacks (ex. the cyber attack on Ukraine’s electrical infrastructure) and how to implement the
outcomes into our existing grid code. Finally, we created a frontend website that allows for a
pleasant and easy end user experience, and used to run simulations and select attacks. These
milestones collectively shaped our project's progression, ensuring its success and security at each
stage.



3.4 PROJECT TIMELINE/SCHEDULE

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

As our entire project is run within a dockerized VM environment, there are no significant risks
associated with this project.

Risks:

● Losing our VMs and our progress - 0.3
○ Mitigation: Create regular backups and VM snapshots

● Using too many resources, causing the department to be mad at us - 0.3
○ Mitigation: Being aware of our resources and making sure nothing runs

out of hand
● Bad actors can see where faults are in the powergrid - 0.5

○ This is a normal worry with all research and open-source projects that are
released for the public to see.

○ Mitigation: Implement proper defense mitigations into the grid so even
though attackers could possibly gain access to this tool, companies will be
able to properly handle the incoming attacks.

1/22-29 2/5-12 2/19-26 3/4-11 3/18-25 4/1-8 4/15-22 4/29-5/6 5/13-20

Analyze pre-existing
transmission and distribution
models

Deliver by
1/29

Analyze the power flow and
design of models

Deliver
by 2/12

Co-Simulation between
transmission and distribution
models

Deliver
by 2/12

Working simulation Deliver
by 3/11

Set up VM and Dockerized
Environments

Deliver by
1/29

Create and run attacks Deliver by
4/22

Frontend for attack modules Deliver by
5/20



3.6 OTHER RESOURCE REQUIREMENTS

Our team identified a few other resource requirements for our project to function effectively. At a
base, we needed access to the Power Cyber infrastructure that was provided by our client.
Additionally, our team needed a multitude of virtual machines. We needed six Ubuntu and
Windows 10 machines for hosting HELICS, Panda Power, & DSS-Python, as well as a master Ubuntu
machine to use for clean testing of the final product.



4 Design

4.1 DESIGN CONTENT

Our design content includes the design and architecture of our project. This includes the software
architecture of the interworking components, as well as the design of our simulated electrical grid.

For the software architecture, we need to establish the connections between our various open
source software systems, HELICS, pandapower, DSS-Python, OpenDER, establish the docker
containers, and connect this system to a user interface, where the client is able to launch the attack
modules and run the simulation of the grid.

As for the electrical design, we need to design an integrated power grid that includes various
transmission lines on PandaPower with varying voltages integrated with DSS-Python for
distribution.

4.2 DESIGN COMPLEXITY

1. Simulation
a. We use a Dockerized environment for our simulation to function on many

different types of ecosystems with minimal adjustments being made. These Docker
containers utilize a frontend, HELICS, PandaPower, and Python-DSS instances to
properly simulate a power grid.

2. Grid Creation

a. Our Solution comes out of the box with a premade power grid that users can
experiment with. We also would like to allow users to input their grids, but this
feasibility needs to be tested.

3. Electric Vehicle Load Profile Modeling

a. HELICS provides an example that was used as the base of the load profile model.
Modifying the battery and charger characteristics along with increasing the
number of electric vehicles allowed us to model a larger load profile. This profile is
closer to something that would be seen in a residential area such as Santa Fe, and
has more realistic load characteristics.

4. Attack Outcomes

a. Since we changed to an emulation standpoint, we are not able to focus on specific
attack vectors. Instead, we are focusing on the outcomes of attacks. The following
are the specific attack outcomes that we had planned for this project.

i. Line tripping: by “tripping” a line, you are disconnecting the line from the
grid, forcing all the power to flow to the destination from a different route.
This could cause cascading effects if the power isn’t distributed evenly.



ii. Generator short-circuit: by short-circuiting a generator, you disable that
generator and cause lower power generation overall. This could cause the
other generators to step up their power generation in order to keep enough
power flowing into the grid to keep up with demand.

iii. Load shedding: by feeding false data into the grid by meddling with the
State Estimation values, a generator could be told the grid requires more
power than the generator is currently generating, causing a ramp up in
power generation. This could lead to more power than a line can handle at
once, causing the line to shed power in order to keep below the limit of the
line.

4.3 MODERN ENGINEERING TOOLS

● HELICS: a co-simulation tool that allows multiple simulators to run simultaneously and off
of each others’ results by allowing each software to speak the same language. This tool is
necessary because otherwise, the simulators running by themselves would not accurately
portray a whole and singular electric grid. This tool can also be used to simulate electric
vehicle load profiles.

● Pandapower: a tool that simulates a transmission grid.
● DSS_python: a tool that portrays a distribution grid, python wrapper for OpenDSS.
● Docker: Containerized solution to run programs on many platforms easily. Simple to create,

tear down, and connect environments.
● Virtualization: Running a guest operating system on a host machine, available to Iowa State

Students to safely run their programs.
● Flask: A basic python web application package that can be used with both simple and

complex applications alike. It allows many other packages to be used on the python
platform to run complex methods.

● Ubuntu: the most popular and flushed out linux distribution that is one of the two industry
standards besides for Red Hat linux.



4.4 DESIGN CONTEXT

Area Description Examples

Public health,
safety, and
welfare

Many health and safety solutions rely on the
power grid to function, from hospitals to homes.

Increased power grid reliability due to
decreased chance of cyber-attacks
impacting users.

Global,
cultural, and
social

People of all groups, within cities and rural
areas, expect electricity to be delivered at all
times if needed.

Less power outages caused by cyberattacks.
More efficient designs can be created.

Environmental Reduced attacks on power grids will lead to less
power waste. This will also help with the overall
design of the grid to be safer and more efficient.

Protecting power grids from cyber attacks
will decrease the need for generators.
Using the principle of economies of scale,
this will waste less fuel.

Economic If the electric grid gets taken down or disabled
by attackers, it will result in financial losses for
the power companies and any companies using
that grid.

Protecting against cyber attacks will allow
less outages and economic loss.

Academia Our project will allow for more lightweight
simulations to be ran for further research into
cyber security for the electrical grid.

By outputting an open source simulation
tool, it allows researchers to set up more
simulations and conduct more research,
which benefits cyber security overall.

4.5 PRIOR WORK/SOLUTIONS

There are a couple papers that did similar projects to ours that our client suggested we look into.
They are:

● HELICSAuto: Automating the Development of Cyber-Physical Co-Simulation Framework
for Smart Grids

○ This paper delves into automating the HELICS API, and tested its usage by
simulating Pandapower, PowerWorld, OpalRT, and PyDNP3 with Helics.

○ This shows us that Pandapower can be utilized with HELICS, as well as gives
examples of other similar programs, but it is not implementing a full electric grid
nor simulating cyber attacks on it.

● Defense-in-Depth Framework for Power Transmission System against Cyber-Induced
Substation Outages

○ This paper takes an IEEE 14 bus system and uses it to evaluate cyber attacks. This
perspective of this paper focuses on the defensive side, and what can be done to
protect an electric grid against a cyber attack, as well as what portions of the grid



need to be particularly paid attention to. The IEEE 14 bus system was simulated
using MatLab 2019a.

○ This paper is similar to our project in the sense that we are both simulating attacks
against a power grid to check for weaknesses, however our project goes into
specific types of attacks, as well as using tools such as HELICS, Pandapower, and
DSS_python to simulate a more accurate and large scale power grid.

● Next-Generation CPS Testbed-based Grid Exercise - Synthetic Grid, Attack, and Defense
Modeling

○ This paper focuses on creating a test-bed environment for the industry to practice
incident response for power grid cyber attacks. This paper is the most similar to
our project, however still has some differences.

○ The program in the paper focuses on how specific parts of the power grid go offline
in the events of an attack, to help simulate a real time attack against a power grid.
Our project focuses more on how specific attacks fare against the power grid, as
well as allowing different types of power grid models to be tested against these
attacks.

4.6 DESIGN DECISIONS

● Run each program in its own Docker container in order to keep different packages separate.
Keeping the transmission and distribution grids in separate Docker environments also
makes the simulation more accurate as these in reality would be separate machines.

● Run the same category of programs in their own virtual machines, because it is easier to
perform attacks on the virtual machines, and simulate disengaging certain parts of the grid.

● We’ve decided on the open source simulators that we did, since it was suggested by our
advisor, many research papers have used the same tooling, and since they’re open source,
they incur no fees.

4.7 PROPOSED DESIGN

● We have experimented using HELICS, pandapower, dss_python (python wrapper for
openDSS), and OpenDSS.

● We have dockerized containers for HELICS, pandapower and dss_python and are
continuing to make improvements.

● We are starting experimentation with connecting HELICS, pandapower and dss_python to
get a fully functioning grid.

● We are currently designing a basic grid layout.
● We are identifying potential attack vectors.
● We got access to the client provided virtual machines and are setting them up.



4.7.0 Design 0

This initial design included sectioning off each program into its own virtual machine Ubuntu box.
dss_python is used to simulate our distribution systems, and is used in conjunction with
pandapower, a simulator for our transmission system. The transmission system is how the high
voltage energy moves across the grid, whereas the distribution system is how the voltage gets
converted to lower voltages at substations to allow for distribution to all of the end users on the
grid. These systems communicate with each other through HELICS, which facilitates the
communication and timing of the simulation results. OpenDER provides dss_python with electric
vehicle information to add more of a strain on the power grid, as well as mimic a real life scenario
now that EV charging is becoming more widespread. This only communicates with the distribution
simulation (dss_python) because it is one of the end “users” that are on the grid and only needs to
interact with the distribution simulation. HELICS communicates the results of the simulation with
our flask frontend, which is our user interface that allows clients to run attack modules against the
grid simulation. The “Time Sync” arrows are information that HELICS sends out to the individual
simulations to make sure they are stepping in the correct time increments and making sure all
simulations are at the same time step. The time will be stepped by default in milliseconds. This is
important as this is what helps it simulate an energy grid in real time, with data mimicking real
world use. When an attack module is chosen and executed, this command is sent to a Kali box that
will run this command against the grid simulation.



4.7.1 Design 1

The major change made was modifying the virtual machine structure from including each program
in its own virtual machine, to having each program included in one virtual machine.

This change was made for:

● Simplicity, since it’s easier to manage one virtual machine with all of the programs in it,
rather than tons of virtual machines all talking to each other.

● This will also result in easier connections, since we won’t have to manage the
communication between several virtual machines. All of the connections are done over the
localhost.



4.7.2 Design 2

● This design is an improvement as we had decided to cut out the Kali VM entirely.

○ The team did not really understand that we did not need the Kali VM to attack the
other VM as instead of actually attacking the VM, we were tasked with emulating a
cyber attack from the inside of the system.

● We switched from using port 22 to separate HTTP endpoints on port 8000 + x for x number
of Docker Instances.

● OpenDER has been removed due to time constraints, the EVs are coded in dss-python
instead

○ See Appendix V for more details.

● Time synchronization has been removed from the figure as it is completely obfuscated and
handled by the HELICS package housed and run in its Docker instance. To edit the timing
of the simulation, it can be done by editing the HELICS configuration JSON file for each
part of the simulation.

● As we are using HTTP endpoints for extra-docker communication, using Flask applications
for communication is the easiest and best way to enable communication between the
Docker instances. The frontend Docker consists of a full-stack approach for the web design,
and all other instances consist of a backend-only API for communication.



4.8 TECHNOLOGY CONSIDERATIONS

● Using Docker instances makes the overall design much more complex, but makes it easy to
deploy on a wide range of platforms, from servers of different architectures or operating
systems.

● Using a Docker shared volume comes with a few downsides when it comes to how each
instance of the program gets pushed to the Docker instances, but this makes it easy to keep
network traffic clean and only related to the simulation.

● Having the network traffic occur over localhost allows for it to be sniffed on the network -
Docker does have a way to do network traffic inside of the Docker Daemon, but this would
make the simulation awfully unrealistic and cyber attacks near impossible.

4.9 DESIGN ANALYSIS

Our first design uses multiple VMs, which would work as well, but would add a lot of complexity,
setup time, and confusion to the overall design of the system. This unneeded complexity would
make the project much harder to implement and explain both to other developers and outside
observers attempting to understand it. Using Dockers has the connections made to the same host,
but on different ports that each App is running on.

Our design works with the existing softwares. We have HELICS sending the results from its Docker
instance with Frontend and displaying graphs and other data on said Frontend. There are research
papers that have used HELICS alongside PandaPower and DSS-Python, so they have worked
together in the past using older versions and wrappers; we want it to work in a Dockerized
environment which will be much more adaptable for others to use. We know how to use
PandaPower and DSS-Python. We are currently trying to figure out how to use HELICS itself in
order to connect the two - which is its main purpose.



5 Testing
The CyHELICS project focuses on simulation integration between several softwares in real time.
Our project proposes a few unique software complications that are tested extensively. Due to the
Dockerized environment we utilize predominantly unit testing, integration testing, and system
testing. Unique challenges that we faced during the testing phase of our design included making
sure that data is properly and efficiently transferred between softwares, making sure that each
software correctly interprets that data transferred, and that our system works correctly as a whole.

5.1 UNIT TESTING

Unit Testing was done by making sure that all software packages can return their versions.
Checking for errors at this step makes sure that all software packages are installed correctly on their
respective Docker containers. Making sure that the HTTP endpoints are all available for sending
and receiving data from the starting of the Docker instances is also vital to the program's success,
and this is accounted for and tested. Unit testing is a bit difficult for our Dss-Python and
PandaPower Docker instances as the modules installed are hard to check if they are required until a
simulation is underway.

Figure 1

Unit Tests for Installed Packages

5.2 INTERFACE TESTING

We need to keep close track of what information is being sent between the Docker containers in
order to make sure that there are no mistranslations in the system. We set up the expected values to



be sent out of the containers and make sure that files are of the correct format (i.e. CSVs are not
being parsed as JSON). These tests can be run using packages such as pytest.

Figure 2

Interface Tests for Return Types

5.3 INTEGRATION AND SYSTEM TESTING

We set up tests for the integration through testing HELICS, as HELICS requires all software
(pandapower, python_dss, Docker, Flask frontend) to be correctly integrated with each other to
work. Since HELICS is a bridge software, if one of the software components does not work, HELICS
does not function properly. These tests are run through a series of basic calculations to ensure
correct output. The results of HELICS are displayed on a Flask frontend application, which further
displays the proper connection between HELICS and the frontend.

5.4 REGRESSION TESTING

We are using Docker to ensure that new additions and features can be added at any point. It is
rather easy to add a new Docker container to the existing nodes that we have set up. Altering the
code will be easy to add new features with Docker as its connections will be made over localhost.
We will test the localhost ports for the connections being established.

We need to ensure that the existing features are not broken by new Docker containers being added,
but due to the nature of the hardcoded port values, unless the new addition is misconfigured, it will
run as intended.



5.5 ACCEPTANCE TESTING

Our client has been working with us throughout the semester to ensure that we are using the
correct tools in order to complete the tasks. Building the correct framework out of the correct
libraries is critical to getting the job done. We tested whether the requirements are met to the
client’s satisfaction and see if the pre planned attacks fulfill the planned goals.

Our tests ensure that our product can continue to be developed and help users determine the
security of their power grids, regardless of their system specifications or tech stack. For compliance
with the project, we must make sure that all parts of the system are able to function individually
and communicate with each other - which leads us to a proper simulation. We can test this through
a myriad of ways and present it to the user when a test is successful at affecting the grid. For
example, when a certain test is established the diagrams produced by PandaPower, OpenDSS, and
Open DER will adjust to those conditions so we see changes in the model with line thickness
(shown on the first figure) and the data results on each individual lines (shown on the second
figure).

5.6 RESULTS

Our testing ensures that upon creation or composing - our project automatically tests itself to
ensure that it will be set up for success and will be able to serve those using it. This is done by
running the pytest script in the Dockerfile so that the program will exit upon failure. This results in
the user not even knowing that testing is taking place unless something is going wrong, in which it
provides useful information in which Docker instance is the root of the problem.



6 Implementation

6.1 FUNCTIONALITY

Frontend Functionality:

● Ability to run power grid simulations with a gamut of different attacks to
be set upon the grid.

● Automatic and manual downloading features to locally save the output of
the simulation.

● Output is placed within a zip file.
● Archive mode to check example output of each attack on a grid.
● EV mode to view examples of electric vehicle loads.
● Updating graphs to show the user the output of the graph.
● Carousel to view different aspects of the graph over time.

Grid Functionality:

● Grid can simulate a power flow over a 24 hour time span.
● Grid can handle multiple load types.
● Properly transfers data between the transmission and distribution grid.
● Limitation: no variable load, no EV integration, only works with Santa Fe

load.

6.2 NOTES

On the topic of attacks:

For attack implementation, we created copies of the existing SantaFe distribution
model code and modified values to simulate lines tripping. Due to time limitations, we
were unable to get all work implemented into the final design.

On the topic of Docker Containers:

A useful thing for debugging the docker containers is to open them in a shell
(which can be done either from the command line of the Docker Extension in Visual Studio
Code (would highly recommend doing for non-technical users)). Opening the Docker in a
bash shell allows the users to check what it is seeing in its application directory (is located
at root and its name can be checked in the docker-compose file).

On the topic of the power grid:

We are simulating the power grid at intervals of 1 hour. While this is not ideal for
many applications - we believe that this strikes the best balance between performance of
the simulation and giving good information to the user.



7 Professionalism
This discussion is with respect to the paper titled “Contextualizing Professionalism in Capstone
Projects Using the IDEALS Professional Responsibility Assessment”, International Journal of
Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

7.1 AREAS OF RESPONSIBILITY

Area of Responsibility Definition NSPE Canon IEEE

Work Competence Perform work of high
quality, integrity,
timeliness,
and professional
competence.

Perform services only in
areas of their
competence;
Avoid deceptive acts.

Point 6 states that we
must not only maintain
but also improve our
technical competence,
and only complete tasks
if qualified by training,
experience, or have
disclosed all limitations.

Financial Responsibility Deliver products and
services of realizable
value and
at reasonable costs.

Act for each employer or
client as faithful agents
or
trustees.

Point 5 states that we
must be honest and
realistic in our claims
and estimates, and adds
that we should fairly
credit the contributions
of others.

Communication
Honesty

Report work truthfully,
without deception, and
understandable to
stakeholders

Issue public statements
only in an objective and
truthful manner; Avoid
deceptive acts.

Point 9 states that we
should avoid injuring
others' property,
reputation, or
employment with our
actions, rumors, or any
other forms of abuse.

Health, Safety,
Well-Being

Minimize risks to safety,
health, and well-being of
stakeholders.

Hold paramount the
safety, health, and
welfare of the
public.

Point 1 states that we
should hold paramount
the safety, health, and
welfare of the public .

Property Ownership Respect property, ideas,
and information of
clients
and others.

Act for each employer or
client as faithful agents
or
trustees.

Point 5 includes that we
should fairly credit the
contributions of others.



Sustainability Protect environment and
natural resources locally
and globally.

Point 1 states that we
should comply with
ethical design and
sustainable practices, not
only to the environment,
but also to the public
and their privacy.

Social Responsibility Produce products and
services that benefit
society
and communities.

Conduct themselves
honorably, responsibly,
ethically, and lawfully so
as to enhance the honor,
reputation, and
usefulness of the
profession.

Point 2 states that we
should improve the
understanding of
individuals and society
of the capabilities and
implications of new
technologies, including
intelligent systems.

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Responsibility Application Performance

Work Competence Yes Medium

Financial Responsibility No N/A

Communication Honesty Yes High

Health, Safety, Well-Being Yes High

Property Ownership No N/A

Sustainability Yes High

Social Responsibility Yes High

● Work Competence
○ Our project must not be deceptive in its topics, we must all have knowledge about

what types of grids we are working with and how the code connects them.
○ A lot of our project so far has been learning about the project itself, hence this only

deserves a medium.
● Financial Responsibility



○ This project uses a provided testbed for virtualization using VMWare. There are no
costs besides the processing resources used by this project, hence it is not
applicable.

● Communication Honesty
○ While we do not have any stakeholders, we are reporting to our advisor and client

every week on what work we have performed and what will be done in the future.
We also get guidance on how to better achieve the goal of the project. Therefore,
we must do well in our communication with the client for the project to be
successful.

○ We have done a good job with our weekly reports to our client and advisor as well
as meeting with him outside of the regularly scheduled meeting time.

● Health, Safety, Well-Being
○ The power grid has many different uses when it comes to medicine, safety, and

modern civilization. Our project may be used to help develop newer power grids or
modify existing ones in order to make them more secure. We must be
understanding and serious about the changes this could cause and make sure we
emphasize that this project is not the be-all-end-all when it comes to power grid
security checking.

○ We have not really had to show this yet, as we have not gotten to the stage of full
product implementation, but we are aware of the weight this holds.

● Property Ownership
○ Our project does not have any property required to own, therefore this does not

apply.
● Sustainability

○ In relation to the Financial Responsibility of the project, we have to have the
sustainability of the project in mind to make sure that no simulation is kept
running on the virtual machines and wasting needless amounts of energy.

○ We have been keeping tabs on the virtual machines and making sure that there are
no active running programs when we are not working.

● Social Responsibility
○ Similar to Health, Safety, Well-Being, we must be cognizant that the product of this

project will be used to help develop power grids. This means that we must do our
best to be mindful of the impact that this will have on power grid developments
and the social impact and weight that holds.

○ We have not really had to show this yet, as we have not gotten to the stage of full
product implementation, but we are aware of the weight this holds.

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

HEALTH, SAFETY, WELL-BEING AND SOCIAL RESPONSIBILITY

This is because the purpose of our project is to benefit the health, safety, and well being of society.
Our project’s goal is to provide a simulator that can help protect the current power grid against



cyber attacks, as well as test potential future designs. Health, safety, well-being and social
responsibility is the backbone of our project.

8 Closing Material

8.1 GENERAL REFLECTION

We are very proud of the work that we have achieved on this project. We can all agree that
the tools we are using have been challenging for us to learn and that we gave it our all. Throughout
the project, we ran into many roadblocks but we were able to overcome them as a team. We
combined very different majors and were able to work concurrently to achieve the goals set by our
client.



9 Appendices

Appendix I - Operation Manual

To run the CyHelics software, download the software off of our git repository
(https://git.ece.iastate.edu/sd/sdmay24-28) and run the command “docker compose up –build”.
This will begin the dockerized application environment. This consists of 4 applications being run
on ports 8000, 8001, 8002, 8003 on the localhost. Port 8000 is the frontend application, please enter
this into the web browser at “localhost:8000/”. The application at port 8001 hosts the HELICS
application, port 8002 is for the transmission application, and port 8003 hosts the distribution
application. To see the configuration for CyHelics, please take a look at the docker-compose.yaml
file for more details.

The frontend consists of two pages, a main control panel and an archive page. The main
page is how one interacts with the live components of the CyHelics software. The Archive mode is a
way to view previous runs of CyHelics. This currently is just stagnant data, however, in the future it
would be simple to store the data to a database.

Figure A1

Main Page

Figure A2

Archive Page

Main Page

The main page the the home page and root directory (/) of the website located at localhost.
Please enter “localhost:8000/” into the url of the web browser to access the frontend of CyHelics.
Once on the main page, you are able to select an attack from the dropdown menu.

https://git.ece.iastate.edu/sd/sdmay24-28


Figure A3

Attack Selection

Once an attack is selected, you can hit the “Run Simulation” button in order to start the application.
At this point on, hitting the “Run Simulation” button will no longer work until the simulation is
complete.

Figure A4

Main Buttons

Other things to check out are all located on the header. Downloading is accessible at any point,
even during a simulation run. You can also toggle the “Auto Download” feature on and off. You can
also check out our website, GitLab, and the archive mode while you wait for the simulation to
complete. Please note the tags underlined in blue seen in Figure 5. These tags are for the status of



the simulation, they will update automatically throughout the run of the simulation. The graphs
should show only having 1 hour within 30 seconds of starting the simulation.

Figure A5

Running Indicators

Once the “Started!” tags have appeared, the graphs will update every 30 seconds until the
simulation finishes. The simulation takes roughly 20 minutes to complete on the current hardware
it is running on, but this may change. The Distribution grid will be the first to finish. Helics and
the Transmission will then exit and the “Started!” tag will be replaced with “Complete”, in which the
auto download will download a zip file of all of the comma separated values used for the graphs. At
this point, the graphs will no longer update until a new simulation is run.

Archive Page

The archive page is much simpler than the main page in that there are no calls to the other
parts of the application (on ports 8001, 8002, 8003). Once you select an attack, the graphs will
update to a stagnant graph. Feel free to explore this page once you are running a simulation.



Figure A6

Archive Selection

Testing

To run the tests, use the “docker compose up –build” command and enter into either the frontend,
dss, or pandapower docker image in a bash shell. This can typically be done from either in the
VSCode Docker Extension or the command line. Once in the shell, run the command “python3 -m
pytest” to run the test suite.

Figure A7

Frontend PyTests

These tests ensure that the endpoints used by the interconnecting docker instances are open and
working properly. These tests are for system, regression, and end-to-end testing.



Appendix II - Learnings

Justin Templeton - I found this project really interesting, challenging, and frustrating at the same
time due to the learning curve of working in a more DevOps role. I did really enjoy working on the
web application side of the project, in which Computer Science 319 has been an invaluable class for
that. In all, I learned Docker like it was the back of my hand, and it is now serving me well in
personal projects or for other classes - so that at least is already paying off.

Kaya Zdan - This project was a very different project from anything else I had done at Iowa State. I
hadn’t worked much with simulation software, much less co-simulating multiple simulations
together before. I was really glad for the first semester to have the time to learn all of this, since
there was a very large learning curve for me. I learned a lot about transmission and distribution
grids, using pandapower, dss-python, and HELICS simulation softwares.

Tyler Atkinson - While working on this project, I was also taking CprE539 to further understand
cyber security in the electrical grid. Using both this project and that class, I learned the basics of
how an electric grid works, possible attack vectors and outcomes of the attacks, and how companies
develop defense strategies for the grid. Overall, this project was super interesting but also super
frustrating at times as there were so many different problems that stalled progress at times.

Zach Hirst - This project was much larger and different than anything I had worked on before. I
was able to draw some of the learning strategies I gathered from the Cyber core classes (230, 231,
331) I took at Iowa State but all of the frameworks were new to me. I enjoyed and am thankful for
having the time in the first semester to learn basics for docker and how co-simulation programs
function. I know that these programs are used across many industries and will have a great impact
on my career now that I have a basic understanding of how they work. There were aspects of the
project that I was able to deepen my understanding of certain technologies. Those technologies
were mainly web development, git, and python. I was able to do smaller more focused tasks in each
of these three technologies that I have already transferred the knowledge to my personal projects.

Matthew Nevin - This project allowed me to display the knowledge that I have gained throughout
my years as an undergraduate student at Iowa State. I got to rope in skills such as power system
analysis (EE 456, EE 457), coding (EE 285, COMS 207), problem solving, and teamwork in order to
design a solution to this problem in a group setting. I learned a great deal about how electric
vehicles can impact the power grid on large scales. I also learned about how charging infrastructure
can be set up and the important variables that can play a role in designing this infrastructure.
Through the use of softwares such as Pandapower and HELICS that can simulate different aspects
of the power grid as a whole I was able to see how a power grid works on a large scale. Working on
CyHELICS allowed me to further explore the transmission, distribution, and load aspects of the
power grid which gave me a great understanding of the infrastructure as a whole.

Tommy Keeshan- I found that this project used many different learnings I had been taught
throughout my power system classes. Such as knowing different equipment on a grid, how to solve
for certain variables, and what values to expect. I had a learning curve with understanding the
coding side of using these analysis programs, especially on a large scale. Using documentation with
little examples made it challenging for me but did force me to work with others who had a stronger



skill set in coding. I also was given the chance to be a helping hand to others who did not have any
understanding of power or electricity and hopefully taught them a thing or two about my major.

Appendix III - Code

For the code structure of our project, the Git Repository contains the following folders. The
main four folders used in the “docker compose up –build” command are as follows:

● frontend
● helics
● pandapower
● dss

More folders can be added to Docker Compose by editing the docker-compose.yaml file.

Figure A8



Root Directory Structure

The EVs directory contains all of the files that fulfill the electric vehicle component to our
project. While it is not attached to the rest of the project currently, it is working independently - so
this is the prime target for future development.

The version-old folder is for the previously working version in-case a rollback is needed
during development.

The other files are used either for documentation, setting up a dev environment, or for
docker purposes.

Appendix IV - Attack Research and Future Work
List of papers used in researching attack outcomes and historical attacks on electric grids:

[13], [14], [15], [16], [17], [18], [19].

Based on the above research papers and the constraints that came with using a dockerized
environment, as well as the libraries we were using for the simulation, we were able to come up with
3 different attack outcomes that we could feasibly implement. The attack outcomes are line
tripping, generator short circuit, and load shedding.

Due to time constraints we weren’t able to get everything implemented that we had initially
planned on. We were only able to get the line tripping implemented and working. Our future work
included implementing the other 2 attacks.

One of the attacks is simulating a generator short-circuit in Pandapower. According to
Pandapower documentation [12], there is a function built into the library that allows for the
simulation of a generator short-circuiting. Our implementation plan was to modify the pandapower
code to have this function run when specified to run this specific scenario.

The other attack is to emulate a data integrity attack by causing load shedding. According
to Pandapower documentation [12], there is a function built into the library that allows for State
Estimation, which is an attack vector for data integrity attacks that was found using the research
stated above. By trying to falsify State Estimation data, we could get the transmission model to
cause load shedding leading to less power on the grid than is needed by the distribution model.



Appendix V - Docker Future Work

Figure A9

Initial Design

Figure A10

Current Design



Figure A11

Future Design

As the Docker environments encapsulate any additional parts of the project, it is easy to
expand upon in the docker compose file. Our current design is utilizing the design seen in Figure 2.
However, the addition of the EV load can either be done using the same design with a complex
encapsulation of the EVs into the Distribution stage or it can be split out into 2 extra Docker
containers like in Figure 3. While this is a more complex design decision from the overall design
standpoint, it makes the workflow much easier to follow and is more realistic when compared to a
design like in Figure 2 due to electric vehicle charging stations thinking independently without
regard to the outside world (i.e. the charging station stops when the car is done charging).

Appendix VI - References
● Docker:

[1] T. Donohue, “How To Communicate Between Docker Containers,” Tutorial
Works, Nov. 06, 2020. https://www.tutorialworks.com/container-networking/ (accessed
Oct. 11, 2023).

[2] “How To Share Data between Docker Containers | DigitalOcean,”
www.digitalocean.com.
https://www.digitalocean.com/community/tutorials/how-to-share-data-between-docker-co
ntainers (accessed Oct. 09, 2023).

https://www.tutorialworks.com/container-networking/


● HELICS:

[3] “HELICS documentation — HELICS documentation,” docs.helics.org.
https://docs.helics.org/en/latest/index.html (accessed Sept. 18, 2023).

[4] “GMLC-TDC/HELICS,” GitHub, Nov. 14, 2023.
https://github.com/GMLC-TDC/HELICS (accessed Sept. 18, 2023).

[5] “HELICS-Examples,” GitHub, Oct. 31, 2023.
https://github.com/GMLC-TDC/HELICS-Examples (accessed Sept. 19, 2023).

[6] “Docker,” hub.docker.com. https://hub.docker.com/r/HELICS/HELICS#
(accessed Oct. 04, 2023).

● OpenDSS

[7] “DSS-Python’s API reference — dss_python 0.14.0.dev documentation,”
dss-extensions.org. https://dss-extensions.org/dss_python/ (accessed Nov. 11, 2023).

[8] “DSS-Python: Extended bindings for an alternative implementation of
EPRI’s OpenDSS,” GitHub, Nov. 27, 2023. https://github.com/dss-extensions/dss_python
(accessed Nov. 11, 2023).

● OpenDER

[9] “epri-dev/OpenDER,” GitHub, Oct. 29, 2023.
https://github.com/epri-dev/opender (accessed Nov. 15, 2023).

[10] Y. M. Anandan Wei Ren, Paulo Radatz, Jithendar, “opender: Open-source
Distributed Energy Resources (DER) Model that represents IEEE Standard 1547-2018
requirements for steady-state and dynamic analyses,” PyPI.
https://pypi.org/project/opender/ (accessed Nov. 15, 2023).

[11] “EPRI Home,” www.epri.com. https://www.epri.com/opender (accessed
Nov. 15, 2023).

● PandaPower

[12] “pandapower,” pandapower. https://www.pandapower.org/ (accessed Sept.
15, 2023).

[13] L. T. Scheidler Alexander, “pandapower: An easy to use open source tool
for power system modeling, analysis and optimization with a high degree of automation.,”
PyPI. https://pypi.org/project/pandapower/ (accessed Sept. 15, 2023).

[14] “e2nIEE/pandapower,” GitHub, Dec. 02, 2023.
https://github.com/e2nIEE/pandapower (accessed Sept. 15, 2023).

● Attacks



[13] Roman Bolgaryn, Gourab Banerjee, et. al, “Open Source Simulation
Software pandapower and pandapipes: Recent Developments”.
https://publica-rest.fraunhofer.de/server/api/core/bitstreams/72a583a8-7204-4f87-bc9d-107
60e07701a/content

[14] Doney Abraham, Sule Yuldirim Yayilgan, et. al, “Cyber Attack Simulation
and Detection in Digital Substation”. https://ieeexplore.ieee.org/document/10176955

[15] Vetrivel Subramaniam Rajkumar, Alexandru Stefanov, et. al, “Cyber Attacks
on Power Grids: Causes and Propagation of Cascading Failures”.
https://ieeexplore.ieee.org/document/10256104

[16] Ashutosh Dutta, Sumit Purohit, et. al, “Cyber Attack Sequences Generation
for Electric Power Grid”. https://ieeexplore.ieee.org/document/9770105

[17] R. Liu, A. Srivastava, “Integrated simulation to analyze the impact of
cyber-attacks on the power grid”. https://ieeexplore.ieee.org/document/7115395

[18] Siddharth Sridhar, Adam Hahn, Manimaran Govindarasu, “Cyber–Physical
System Security for the Electric Power Grid”. https://ieeexplore.ieee.org/document/6032699

[19] Robert Lee, Michael Assante, Tim Conway, “Analysis of the Cyber Attack
on the Ukrainian Power Grid”.
https://nsarchive.gwu.edu/sites/default/files/documents/3891751/SANS-and-Electricity-Inf
ormation-Sharing-and.pdf


